Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons

The Journal of Neuroscience

View/Open
Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons.pdf (3.555Mb)
Date
2009
Author
Saal, Hannes
Vijayakumar, Sethu
Johansson, Roland
Metadata
Show full item record
Abstract
Although information in tactile afferent neurons represented by firing rates has been studied extensively over nearly a century, recent studies suggest that precise spike timing might be more important than firing rates. Here, we used information theory to compare the information content in the discharges of 92 tactile afferents distributed over the entire terminal segment of the fingertip when it was contacted by surfaces with different curvatures and force directions representative of everyday manipulations. Estimates of the information content with regard to curvature and force direction based on the precise timing of spikes were at least 2.2 times and 1.6 times, respectively, larger than that of spike counts during a 125 ms period of force increase. Moreover, the information regarding force direction based on the timing of the very first elicited spike was comparable with that provided by spike counts and more than twice as large with respect to object shape. For all encoding schemes, afferents terminating close to the stimulation site tended to convey more information about surface curvature than more remote afferents that tended to convey more information about force direction. Finally, coding schemes based on spike timing and spike counts overall contributed mostly independent information. We conclude that information about tactile stimuli in timing of spikes in primary afferents, even if limited to the first spikes, surpasses that contained in firing rates and that these measures of afferents’ responses might capture different aspects of the stimulus.
URI
http://www.jneurosci.org/cgi/content/abstract/29/25/8022

http://hdl.handle.net/1842/3653
Collections
  • Informatics Publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page