Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Bayesian Approach to Empirical Local Linearization For Robotics

Proc. IEEE International Conference on Robotics and Automation (ICRA '08)

View/Open
A Bayesian Approach to Empirical Local Linearization For Robotics.pdf (898.5Kb)
Date
2008
Author
Ting, Jo-Anne
D'Souza, Aaron
Vijayakumar, Sethu
Schaal, Stefan
Metadata
Show full item record
Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a “reasonable” linear regime of the system, which can be defined from the Hessian at the point of the linearization— a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a “reasonable” local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. The approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.
URI
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4543643

http://hdl.handle.net/1842/3669
Collections
  • Informatics Publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page