Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the formation and remodelling of myelinated axons in vivo

View/Open
Williamson2020.pdf (7.959Mb)
Date
22/01/2020
Author
Williamson, Jill M.
Metadata
Show full item record
Abstract
Myelin is a crucial component of the vertebrate nervous system, both in facilitating rapid conduction of action potentials and in metabolically supporting axons. Recent research has theorised that myelin sheaths play a more intricate role in nervous system function by regulating circuits in response to experience. The number, length, thickness, and distribution of myelin sheaths along an axon all influence its underlying conduction properties. Thus, establishing or changing particular myelin patterns along axons could refine the precise timing of signals to change circuit outputs. Yet, how the myelin patterns along single axons are established, how myelin is remodelled over time, and how neuronal activity affects these processes, is not yet fully understood. I sought to investigate how myelin is formed, remodelled and maintained over time along individual axons in the larval zebrafish central nervous system. I first characterised the formation of myelin patterns along two different subtypes of axon in the larval zebrafish spinal cord. Using transgenic tools and confocal microscopy, I performed live imaging of single axons over a period of time during developmental myelination. Reticulospinal (RS) axons are involved in locomotor circuits, and are myelinated in a synaptic vesicle release-dependent manner; whereas, Commissural Primary Ascending (CoPA) axons are involved in sensory processing circuits, and are myelinated in a synaptic vesicle release-independent manner. I hypothesised that myelin patterns along axons are formed in a circuit-dependent fashion, and, therefore, that axons from different circuits would exhibit different myelin patterns. However, I found that both RS and CoPA axons have very similar myelin patterns, in terms of their myelin sheath number, length, myelin coverage, and nodal gap length, and that these patterns are established within a defined time window after the onset of myelination. I, then, assessed how myelin sheaths are remodelled along RS and CoPA axons over time, and found that myelin sheaths could either grow or shrink in length, or could be fully retracted from the axon itself. I hypothesised that myelin remodelling would occur along axons which use activity-related signals to regulate their myelination, and therefore, that RS axons would exhibit more myelin remodelling than CoPA axons. However, I found that RS and CoPA axons exhibited very similar degrees of myelin remodelling. Finally, I used a chemogenetic tool and live imaging by confocal microscopy to investigate how increasing activity in individual RS axons affects the dynamics of myelin sheath growth and the formation of myelin patterns. I found that increasing neuronal activity promotes the early growth of myelin sheaths within a critical period; after this period, neuronal activity no longer affects myelin sheath dynamics along RS axons. By promoting this early sheath growth, activity can change the myelin pattern established along individual RS axons. Collectively, this research begins to elucidate how individual myelinated axons are formed and maintained during nervous system development, and the cellular mechanisms by which neuronal activity may regulate this process.
URI
https://hdl.handle.net/1842/36699

http://dx.doi.org/10.7488/era/6
Collections
  • Edinburgh Medical School thesis and dissertation collection

Related items

Showing items related by title, author, creator and subject.

  • Microglia regulate myelin growth and integrity in the central nervous system white matter 

    McNamara, Niamh (The University of Edinburgh, 2023-01-30)
    Disruption of myelin structure occurs with ageing and neurodegenerative disease, and involves myelin which is outfolding, unravelling, less compact, and thicker. This is associated with nerve dysfunction and cognitive ...
  • Development of a human pluripotent stem cell-derived in vitro model of myelination 

    James, Owen Gwydion (The University of Edinburgh, 2020-11-30)
    Myelination is essential for central nervous system (CNS) formation, health, and function. Its development is an adaptive and regulated process that, when perturbed, leads to disease. However, our understanding of ...
  • Exploring the role of central nervous system myelination in circuit function and behaviour 

    Madden, Megan Elizabeth (The University of Edinburgh, 2020-08-07)
    Activity-mediated myelination, the adjustment of myelin morphology in response to neuronal activity, has been proposed as a novel mechanism of central nervous system (CNS) plasticity. As a key regulator of conduction ...

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page