Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering publications
  • View Item
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Diversity Order of Non-Orthogonal Amplify-and-Forward over Block-Fading Channels

IEEE Transactions On Wireless Communications

View/Open
McLaughlinS_On the Diversity Order.pdf (731.7Kb)
Date
05/2010
Author
Krikidis, Ioannis
Thompson, John S.
McLaughlin, Steve
Metadata
Show full item record
Abstract
In this paper, we deal with the performance of non-orthogonal Amplify-and-Forward protocols over block-fading channels (BFNAF),where the source retransmits the same data during cooperation in order to increase spatial diversity. Despite the additional diversity degree that is offered by the channel, channel inversion amplification schemes are not always able to increase the diversity gain of the system due to the high correlation that can result in the two simultaneous transmissions. It is proven that this diversity loss is related to a poor source-relay link that via the relay amplification process affects the third available diversity branch corresponding to the second source transmission. In order to resolve this problem, we integrate a fixed gain amplification factor in the BFNAF scheme which efficiently uses the additional diversity degree of the channel and recovers the diversity loss associated with channel inversion schemes. This new BFNAF scheme offers spatial diversity benefits with high reliability and is an appropriate solution for Amplify-and-Forward scenarios in which the source-relay link is not stronger than the relay-destination link. The diversity analysis is based on some well-defined capacity bounds which follow the diversity order of the true capacity and enable theoretical derivations. The enhancements of the proposed schemes are verified through both theoretical results and computer simulations.
URI
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5475334

http://hdl.handle.net/1842/3726
Collections
  • Engineering publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page