Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical simulations of neutron star mergers as the central engines of short-period gamma-ray bursts

View/Open
Archibald2009.pdf (19.29Mb)
Date
2009
Author
Archibald, Richard Andrew
Metadata
Show full item record
Abstract
We present the results of fully three dimensional, post-Newtonian hydrodynamical simulations of the dynamical evolution of mergers between compact stellar remnants (neutron stars and black holes). Although the code is essentially Newtonian, we simulate gravitational wave emission and the corresponding effect on the fluid flow via a post-Newtonian correction. Also, we use a modified Newtonian potential which reproduces certain aspects of the Schwarzschild and Kerr solutions to improve the physics in the vicinity of the black hole. Changes to the energy by neutrino/antineutrino emission are accounted for by an extensive neutrino leakage scheme. The hydrodynamical equations are integrated using the piecewise parabolic method (PPM) and the neutron star matter is described by a tabulated equation of state (EoS). Since the physics of matter at the extreme densities found in neutron stars is not yet certain, we compare results computed using two such tables to ascertain whether this uncertainty in the micro-physics extends to an uncertainty in the energy available to power a short-period gamma-ray burst. With an aim to including magnetic field physics to these simulations, we present a survey of approximate Riemann solvers which may be more easily extended to the system of equations of magnetohydrodynamics (MHD) than the exact or iterative Riemann solver used in the PPM scheme. Tests are performed using the linearised solver of Roe and the approximate Harten, Lax, van Leer and Einfeldt Riemann solvers (HLLE and HLLEM) with the PPM reconstruction scheme. Finally, we discuss the effectiveness of these approximate Riemann solvers in the simulation of mergers between compact stellar remnants.
URI
http://hdl.handle.net/1842/3803
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page