Show simple item record

dc.contributor.advisorArslan, Tughrul
dc.contributor.advisorErdogan, Ahmet T.
dc.contributor.authorHan, Wei
dc.date.accessioned2010-10-04T09:48:38Z
dc.date.available2010-10-04T09:48:38Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1842/3812
dc.description.abstractBroadband Wireless Access technologies have significant market potential, especially the WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high performance WiMAX solutions is forcing designers to seek help from multi-core processors that offer competitive advantages in terms of all performance metrics, such as speed, power and area. Through the provision of a degree of flexibility similar to that of a DSP and performance and power consumption advantages approaching that of an ASIC, coarse-grained dynamically reconfigurable processors are proving to be strong candidates for processing cores used in future high performance multi-core processor systems. This thesis investigates multi-core architectures with a newly emerging dynamically reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC based simulator, called MRPSIM, is devised to model this multi-core architecture. This simulator provides fast simulation speed and timing accuracy, offers flexible architectural options to configure the multi-core architecture, and enables the analysis and investigation of multi-core architectures. Meanwhile a profiling-driven mapping methodology is developed to partition the WiMAX application into multiple tasks as well as schedule and map these tasks onto the multi-core architecture, aiming to reduce the overall system execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly integrated with the existing RICA tool flow. Based on the proposed master-slave multi-core architecture, a series of diverse homogeneous and heterogeneous multi-core solutions are designed for different fixed WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM simulator, these multi-core solutions contain different numbers of cores, combine various memory architectures and task partitioning schemes, and deliver high throughputs at relatively low area costs. Meanwhile a design space exploration methodology is developed to search the design space for multi-core systems to find suitable solutions under certain system constraints. Finally, laying a foundation for future multithreading exploration on the proposed multi-core architecture, this thesis investigates the porting of a real-time operating system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is implemented on a single RICA processor with the operating system support.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.subjectmulti-coreen
dc.subjectWiMAXen
dc.subjectreconfigurableen
dc.titleMulti-core architectures with coarse-grained dynamically reconfigurable processors for broadband wireless access technologiesen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record