Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics and microstructure of colloidal complex fluids: a lattice Boltzmann study

View/Open
Kim2009.pdf (7.815Mb)
Kim2009_Supporting_movies.zip (44.93Mb)
Date
2009
Author
Kim, Eunhye
Metadata
Show full item record
Abstract
The lattice Boltzmann (LB) method is a versatile way to model complex fluids with hydrodynamic interactions through solving the Navier-Stokes equations. It is well-known that the role of hydrodynamic interactions is ignorable in studying the Boltzmann equilibrium of colloidal (Brownian) particles. However, full hydrodynamic interactions play an important role in their dynamics. In the LB framework for moving colloids, the “bounce-back on links” method is used to calculate the hydrodynamic forces. In this thesis, three kinds of colloidal complex fluids with full hydrodynamic interactions are simulated by lattice Boltzmann methods: colloids in a binary fluid, magnetic colloids in a single fluid and magnetic colloids in a binary fluid. First, we have done extensive simulations of nanoparticles in a binary fluid, following up previous work[1] which predicted formation of a “bijel” (bicontinuous interfacially jammed emulsion gel) in symmetric fluid quenches. Our work in this thesis focuses on the analysis of the dynamics after nanoparticles become arrested on the fluid-fluid interfaces under conditions varying from a symmetric quench to a strongly asymmetric quench. Although these new simulations extend the time window studied by a factor of two, slow domain growth is still observed. Our new analyses address the mechanics of the slow residual dynamics which involves cooperative motion of the nanoparticles at the fluid-fluid interfaces. The second topic is the LB simulation of colloidal ferrofluids to see the effect of full hydrodynamic interactions among magnetic colloids. The main focus is on how the hydrodynamic interaction affects both the equilibrium dynamics of these dipolar systems and also their transient dynamics to form clusters. Numerically, magnetic colloids are implemented with the long-range dipolar interactions described by Ewald summation. To check the effect of full hydrodynamic interactions, Brownian dynamics without any hydrodynamic interaction has been done for comparison: Monte Carlo results are also reported. We confirm that our LB generates the Boltzmann distribution for static equilibrium properties, by comparison with these methods. However, the equilibrium dynamics is altered: hydrodynamic interactions make the structural relaxations slower in both the short-time and the long-time regime. This slow relaxation rate is also found for transient motions. The third topic addresses magnetic colloids in a binary fluid. In contrast with the preceding two systems which correspond directly to laboratory experiments, this last system is so far only predicted by the LB results in this thesis. To explore this hypothetical new material by the LB method, the basic structures are investigated in terms of both domain growth morphology and the arrangement of magnetic colloids. Under conditions varying from a symmetric quench to an asymmetric quench, a chainlike arrangement is observed for dipoles jammed on the surfaces, but the basic morphology of domains is still maintained regardless of the dipolar strength. In addition, applying external field affects the morphology of domains and the stability of domain structures.
URI
http://hdl.handle.net/1842/3926
Collections
  • Physics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page