Show simple item record

dc.contributor.advisorGuo, Heng
dc.contributor.advisorCryan, Mary
dc.contributor.authorMousa, Giorgos
dc.date.accessioned2022-09-06T13:57:53Z
dc.date.available2022-09-06T13:57:53Z
dc.date.issued2022-09-06
dc.identifier.urihttps://hdl.handle.net/1842/39353
dc.identifier.urihttp://dx.doi.org/10.7488/era/2604
dc.description.abstractA study of random walks over simplicial complexes with a particular emphasis on matroids. A framework is developed that yields results on the entropy contraction and modified log-Sobolev constant of the exchange walks over the levels of a simplicial complex, on the basis of entropy contraction properties of some local walks. This provides a general method for analyzing a variety of Markov chains by analyzing some of their lower-dimensional instances.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionMary Cryan, Heng Guo, and Giorgos Mousa. Modified log-Sobolev in equalities for strongly log-concave distributions. Ann. Probab., 49(1):506– 525, 2021.en
dc.relation.hasversionHeng Guo and Giorgos Mousa. Local-to-global contraction in simplicial complexes. CoRR, abs/2012.14317, 2020.en
dc.subjectsimplicial complexesen
dc.subjectMarkov chainsen
dc.subjectsampling and countingen
dc.subjectfunctional inequalitiesen
dc.subjectmixing timeen
dc.subjectmatroidsen
dc.subjectbroken circuit complexen
dc.titleLocal-to-global functional inequalities in simplicial complexesen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record