Thinking inside the box: mechanisms in non-covalent catalysis with Pd₂L₄ capsules
View/ Open
Boaler2022.pdf (10.92Mb)
Date
22/12/2022Item status
Restricted AccessEmbargo end date
22/12/2023Author
Boaler, Patrick J.
Metadata
Abstract
Non-covalent catalysis with coordination capsules continues to be an ever-expanding subfield of
supramolecular chemistry. With this expansion comes increasingly refined studies of reaction mechanism,
revealing how non-covalent catalysts reshape the potential energy landscape around the reactants,
offering faster reactions, more favourable selectivities, and milder conditions. However, a key
methodology that remains underutilised in contemporary mechanistic studies is modelling the kinetics of
reaction networks. This thesis describes the effects of a Pd₂L₄ capsule catalyst on the solution phase
chemistry of a variety of guests. This is facilitated by monitoring temporal concentrations of multiple
species over the duration of catalytic reactions using NMR and UV-visible spectroscopy, and conducting
system-level modelling of reaction kinetics to produce new mechanistic insights.
Chapter one presents a brief introduction to coordination capsules in general, some examples of their use
as non-covalent catalysts, and selected examples of mechanistic study in this subfield. This chapter also
introduces various classes of techniques used in mechanistic study, and gives a brief introduction to kinetic
modelling methods for catalytic reaction systems.
Chapter two concerns the investigation of a catalytic condensation reaction utilising a co-catalyst system
of Pd₂L₄ and haloquinone p-fluoranil. Through UV-vis and 1H NMR investigations, the reactivity is proposed
to originate from “hidden” Brønsted acid catalysis, initiated by capsule-activated substitution and
ionisation chemistry in dichloromethane.
Chapter three concerns the investigation of base-catalysed conjugate addition reactions mediated by
catalytic Pd₂L₄. Through direct detection of reactive intermediates by ¹H NMR spectroscopy, the kinetics
are studied in detail. An origin for the significant degree of rate enhancement is proposed, and the
capsule’s ability to efficiently redirect the reaction mechanism is explored.
Chapter four concerns a theoretical investigation into the kinetics of product inhibition in bimolecular
coupling reactions, catalysed by a generalised coordination capsule. Dual encapsulation mechanisms are
shown to be kinetically viable in cases where the binding affinity of the two co-substrates is strongly
“biased”. The results presented strongly challenge the conventional belief that non-covalent capsule
catalysts are inherently unsuited to promoting net coupling reactions.
Chapter five concerns an investigation into the host-guest dynamics of Pd₂L₄-quinone complexes through
direct observation of their kinetics using stopped-flow UV-visible spectroscopy. Analysis of the kinetics of
binding and exchange processes leads to a more detailed understanding of the chemistry underpinning
all catalytic processes using these complexes.