Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low- and high-resource opinion summarization

View/Open
BražinskasA_2022.pdf (3.127Mb)
Date
25/01/2023
Author
Bražinskas, Arthur
Metadata
Show full item record
Abstract
Customer reviews play a vital role in the online purchasing decisions we make. The reviews express user opinions that are useful for setting realistic expectations and uncovering important details about products. However, some products receive hundreds or even thousands of reviews, making them time-consuming to read. Moreover, many reviews contain uninformative content, such as irrelevant personal experiences. Automatic summarization offers an alternative – short text summaries capturing the essential information expressed in reviews. Automatically produced summaries can reflect overall or particular opinions and be tailored to user preferences. Besides being presented on major e-commerce platforms, home assistants can also vocalize them. This approach can improve user satisfaction by assisting in making faster and better decisions. Modern summarization approaches are based on neural networks, often requiring thousands of annotated samples for training. However, human-written summaries for products are expensive to produce because annotators need to read many reviews. This has led to annotated data scarcity where only a few datasets are available. Data scarcity is the central theme of our works, and we propose a number of approaches to alleviate the problem. The thesis consists of two parts where we discuss low- and high-resource data settings. In the first part, we propose self-supervised learning methods applied to customer reviews and few-shot methods for learning from small annotated datasets. Customer reviews without summaries are available in large quantities, contain a breadth of in-domain specifics, and provide a powerful training signal. We show that reviews can be used for learning summarizers via a self-supervised objective. Further, we address two main challenges associated with learning from small annotated datasets. First, large models rapidly overfit on small datasets leading to poor generalization. Second, it is not possible to learn a wide range of in-domain specifics (e.g., product aspects and usage) from a handful of gold samples. This leads to subtle semantic mistakes in generated summaries, such as ‘great dead on arrival battery.’ We address the first challenge by explicitly modeling summary properties (e.g., content coverage and sentiment alignment). Furthermore, we leverage small modules – adapters – that are more robust to overfitting. As we show, despite their size, these modules can be used to store in-domain knowledge to reduce semantic mistakes. Lastly, we propose a simple method for learning personalized summarizers based on aspects, such as ‘price,’ ‘battery life,’ and ‘resolution.’ This task is harder to learn, and we present a few-shot method for training a query-based summarizer on small annotated datasets. In the second part, we focus on the high-resource setting and present a large dataset with summaries collected from various online resources. The dataset has more than 33,000 humanwritten summaries, where each is linked up to thousands of reviews. This, however, makes it challenging to apply an ‘expensive’ deep encoder due to memory and computational costs. To address this problem, we propose selecting small subsets of informative reviews. Only these subsets are encoded by the deep encoder and subsequently summarized. We show that the selector and summarizer can be trained end-to-end via amortized inference and policy gradient methods.
URI
https://hdl.handle.net/1842/39769

http://dx.doi.org/10.7488/era/3017
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page