Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • Membrane Technology Research Group
  • Membrane Technology Research Group publications
  • View Item
  •   ERA Home
  • Engineering, School of
  • Membrane Technology Research Group
  • Membrane Technology Research Group publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter

View/Open
J67 ERA.pdf (655.9Kb)
Date
2009
Author
Banasiak, Laura J.
Schäfer, Andrea
Metadata
Show full item record
Abstract
The removal of the trace inorganic contaminants boron (B(OH)4−), fluoride (F−) and nitrate (NO3−) from synthetic aqueous solutions containing organic matter using electrodialysis was investigated. The transport of the contaminants through the ion-exchange membranes was evaluated in relation to hydrated ionic radius, whereby a positive correlation was found in absence of organic matter. NO3−, with the smaller hydrated ionic radius and weaker hydration shell, was removed more effectively than F−, which has a larger hydrated ionic radius and stronger hydration shell. The removal of F− and NO3− was not significantly influenced by solution pH due to their pH independent speciation. However, the removal of boron was dependent on increasing solution pH and the degree of demineralization. Dissolved organic matter (humic acid, tannic acid and alginic acid) resulted in enhanced removal of boron and F− as a result of the binding of F− within the organic matter structure and complexation of boric acid (B(OH)3) with carboxylate groups in the organic matter. Deposition of organic matter to the anion-exchange membranes was noted. Inorganic trace contaminant and organic matter membrane deposition influenced system performance in regards to an increase in stack resistance and decrease in removal and flux of total dissolved solids.
URI
http://dx.doi.org/10.1016/j.memsci.2009.02.020

http://hdl.handle.net/1842/4268
Collections
  • Engineering publications
  • Membrane Technology Research Group publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page