Show simple item record

dc.contributor.advisorWright, Jim
dc.contributor.advisorCarbery, Tony
dc.contributor.authorPapadimitropoulos, Christos
dc.date.accessioned2011-01-18T14:04:50Z
dc.date.available2011-01-18T14:04:50Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1842/4625
dc.description.abstractWe study the Fourier restriction phenomenon in settings where there is no underlying proper smooth subvariety. We prove an (Lp, L2) restriction theorem in general locally compact abelian groups and apply it in groups such as (Z/pLZ)n, R and locally compact ultrametric fields K. The problem of existence of Salem sets in a locally compact ultrametric field (K, | · |) is also considered. We prove that for every 0 < α < 1 and ǫ > 0 there exist a set E ⊂ K and a measure μ supported on E such that the Hausdorff dimension of E equals α and |bμ(x)| ≤ C|x|−α 2 +ǫ. We also establish the optimal extension of the Hausdorff-Young inequality in the compact ring of integers R of a locally compact ultrametric field K. We shall prove the following: For every 1 ≤ p ≤ 2 there is a Banach function space Fp(R) with σ-order continuous norm such that (i) Lp(R) ( Fp(R) ( L1(R) for every 1 < p < 2. (ii) The Fourier transform F maps Fp(R) to ℓp′ continuously. (iii) Lp(R) is continuously included in Fp(R) and Fp(R) is continuously included in L1(R). (iv) If Z is a Banach function space with the same properties as Fp(R) above, then Z is continuously included in Fp(R). (v) F1(R) = L1(R) and F2(R) = L2(R).en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.subjectFourier restriction phenomenonen
dc.subjectrestriction theoremen
dc.subjectabelian groupsen
dc.titleFourier restriction phenomenon in thin setsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record