Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • Membrane Technology Research Group
  • Membrane Technology Research Group publications
  • View Item
  •   ERA Home
  • Engineering, School of
  • Membrane Technology Research Group
  • Membrane Technology Research Group publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis

View/Open
J82 ERA-1.pdf (372.2Kb)
Date
2011
Author
Richards, Laura A.
Richards, Bryce S.
Schäfer, Andrea
Metadata
Show full item record
Abstract
The objective of this study was to evaluate the effects of fluctuating energy and pH on retention of dissolved contaminants from real Australian groundwaters using a solar (photovoltaic) powered ultrafiltration – nanofiltration/reverse osmosis (UF-NF/RO) system. Four NF/RO membranes (BW30, ESPA4, NF90, and TFC-S) were used. Energy fluctuations affected pressure and flow. Solar irradiance levels impacted retention of fluoride, magnesium, nitrate, potassium, and sodium where convection/diffusion dominated retention. Retention of calcium, strontium, and uranium was very high and independent of solar irradiance, which was attributed to a combination of size and charge exclusion and for some solutes sorption and precipitation. Groundwater characteristics affected retention and the solutes were categorized into two groups according to retention as a function of pH: (1) pH independent retention (arsenic, calcium, chloride, nitrate, potassium, selenium, sodium, strontium, and sulfate); and (2) pH dependent retention (copper, magnesium, manganese, molybdenum, nickel, uranium, vanadium, and zinc). The retention of Group 1 solutes was typically high and attributed to steric effects. Group 2 solutes had dominant, insoluble species under certain conditions which led to deposition on the membrane surface (and thus varying apparent retention). The renewable energy membrane system removed a large number of groundwater solutes reliably over a range of real energy and pH conditions.
URI
http://hdl.handle.net/1842/4667
Collections
  • Engineering publications
  • Membrane Technology Research Group publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page