Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences thesis and dissertation collection
  • View Item
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure-based drug design of 11β-hydroxysteroid dehydrogenase type 1 inhibitors

View/Open
Adie Word.zip (37.44Mb)
Adie2010.pdf (11.87Mb)
Date
2010
Author
Adie, Jillian E.
Metadata
Show full item record
Abstract
The enzyme 11β-Hydroxysteroid Dehydrogenase 1 (11β-HSD1) catalyses the intracellular biosynthesis of the active glucocorticoid cortisol. Tissue specific dysregulation of the enzyme has been implicated in the development of metabolic syndrome and other associated diseases. Experiments with transgenic mice and prototype inhibitors show that inhibition of 11β-HSD1 in visceral adipose tissue and liver leads to a resistance of diet-induced hyperglycemia and a favourable lipid and lipoprotein profile as compared to controls. 11β-HSD1 inhibition has thus been proposed as an effective strategy to decrease intracellular glucocorticoid levels without affecting circulating glucocorticoid levels that are essential for stress responses. The clinical development of selective and potent drugs has therefore become a priority. In this research, a process of virtual screening employing the novel algorithm UFSRAT (Ultra Fast Shape Recognition with Atom Types) was used to discover compounds which had specific physicochemical and spatial atomic parameters deemed essential for inhibition of 11β-HSD1. The top scoring compounds were assayed for inhibitory activity against recombinant human and mouse enzyme, using a fluorescence spectroscopy approach. In addition, HEK-293 cell based assays with either human, mouse or rat enzymes were carried out using a scintillation proximity assay (SPA). The most potent compound competitively inhibited human 11β-HSD1 with a Kiapp value of 51 nM. Recombinant mouse and human enzyme were expressed, purified and characterised and used in a series of ligand binding assays. Further to this, an X-ray crystal structure of mouse 11β-HSD1 in complex with a tight binding inhibitor – carbenoxolone was solved.
URI
http://hdl.handle.net/1842/4673
Collections
  • Biological Sciences thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page