Show simple item record

dc.contributor.advisorSeaton, Nigel
dc.contributor.advisorSarkisov, Lev
dc.contributor.advisorCracknell, Roger
dc.contributor.authorPinto da Costa, José Mário Cerqueira
dc.date.accessioned2011-01-26T10:21:01Z
dc.date.available2011-01-26T10:21:01Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1842/4682
dc.description.abstractCarbonaceous engine deposits tend to accumulate on most of the inner surfaces of the car engine. The presence of these deposits leads to a deteriorated efficiency of the engine and a number of adverse effects, such as higher propensity of the engine to knock. It has been proposed that selective adsorption of some of the fuel components in the porous deposits (and changing composition of the pre-combustion fuel) could be a contributing mechanism of the diminished efficiency of the engine. This, as well as other mechanisms of the deposits action, crucially depend on the porous structure of the material. Therefore, the aim of this investigation is to develop a method, which is able to accurately characterize the internal porous structure of the engine deposits and predict their adsorption properties at different conditions. This should allow us to assess whether the selective adsorption of fuel components is indeed a plausible contributing mechanism to the diminished performance of the engine. Accurate characterization of the engine deposits faces several difficulties due to their complex porous structure and chemical composition. A widely adopted approach in the characterization of activated carbons, which combines molecular simulation, specifically grand canonical Monte Carlo (GCMC) in slit pores, and experimental adsorption isotherms, is the starting point for the method suggested in this work. In this thesis, we will demonstrate that, by systematic modification of the solid-fluid interaction in the molecular simulation, we are able to correctly account for the chemical structural heterogeneity of the samples used. The new parameters of solid-fluid interaction allow us to extract representative pore size distributions and investigate the adsorption properties under different conditions of temperature and pressure, based on the obtained pore size distribution. Specifically, using the experimental data from a single ethane isotherm at 278K we accurately predict ethane adsorption at other temperatures and in different samples. Additionally, the proposed method is able to predict the adsorption of more complex hydrocarbons, i.e. n-butane and isobutane. The performance of the method is assessed by comparing the simulations results with the experimental adsorption measurements data on the engine deposits samples. Another important capability of the method is that it enables us to generate adsorption predictions of two key components commonly used to represent the combustion properties of the fuel, n-heptane and isooctane. We explore the equilibrium adsorption properties of these components based on the determined pore size distributions of the deposit samples. The results presented in the thesis highlight the importance of the adsorption in the internal porous structure of the engine deposits. The present study reinforces the value of molecular simulation combined with a limited number of experimental measurements, to accurately characterize heterogeneous carbonaceous materials and to make predictions at different conditions with sufficient precision.en
dc.contributor.sponsorShell Global Solutionsen
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.subjectcarbonaceous engine depositsen
dc.subjectengine knocken
dc.subjectdiminished efficiencyen
dc.subjectgrand canonical Monte Carloen
dc.subjectadsorption isothermsen
dc.subjecthydrocarbonsen
dc.titleStructural characterization of carbonaceous engine depositsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record