Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Geosciences, School of
  • GeoSciences PhD thesis and dissertation collection
  • View Item
  •   ERA Home
  • Geosciences, School of
  • GeoSciences PhD thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of exchange and magnetostatic interactions on grain boundaries

View/Open
Barron2011.pdf (62.37Mb)
Barron2011_small.pdf (27.86Mb)
Date
28/06/2011
Author
Barron, Louise Lillias Margaret
Metadata
Show full item record
Abstract
Magnetic minerals are abundant within our Earth's crust and can retain, through one of a number of processes, a remanent magnetisation induced by the Earth's magnetic field. Analyses of palaeomagnetic samples have been used for the past fifty years to improve our understanding of many of the Earth's major processes. Recent studies utilising newly developed imaging techniques, namely holographic transmission electron microscopy, have for the first time allowed direct observations of the magnetic structure in palaeomagnetic samples on a nanoscale. It is commonly observed that igneous rocks contain closely packed magnetic lamellae with a non-magnetic matrix, a result of the chemical process of exsolution. However, the results of current micromagnetic models, generated to predict the magnetic structure within such samples, are not in agreement with these direct observations. The results do, however, show strong similarities to the direct observations. The discrepancies between the direct observations and micromagnetic models indicate a lack of understanding of the magnetic interactions within such samples. To examine this two distinct hypotheses have been tested. Firstly, the geometry of the system has been altered to examine the effect of this on the magnetic structure of the grains. Secondly, a multiphase model has been produced. This multiphase model allows the simulation of more complicated systems that include more than one magnetic material in direct contact. This multiphase model has allowed us to examine the effect of varying the exchange in these multiphase structures and its effect on the modelled magnetic structure. Further, this multiphase model has allowed us to examine theoretical systems involving combinations of magnetic materials commonly found in palaeomagnetic samples.
URI
http://hdl.handle.net/1842/5023
Collections
  • GeoSciences PhD thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page