Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning user modelling strategies for adaptive referring expression generation in spoken dialogue systems

View/Open
Janarthanam2011.pdf (9.156Mb)
Date
30/06/2011
Author
Janarthanam, Srinivasan Chandrasekaran
Metadata
Show full item record
Abstract
We address the problem of dynamic user modelling for referring expression generation in spoken dialogue systems, i.e how a spoken dialogue system should choose referring expressions to refer to domain entities to users with different levels of domain expertise, whose domain knowledge is initially unknown to the system. We approach this problem using a statistical planning framework: Reinforcement Learning techniques in Markov Decision Processes (MDP). We present a new reinforcement learning framework to learn user modelling strategies for adaptive referring expression generation (REG) in resource scarce domains (i.e. where no large corpus exists for learning). As a part of the framework, we present novel user simulation models that are sensitive to the referring expressions used by the system and are able to simulate users with different levels of domain knowledge. Such models are shown to simulate real user behaviour more closely than baseline user simulation models. In contrast to previous approaches to user adaptive systems, we do not assume that the user’s domain knowledge is available to the system before the conversation starts. We show that using a small corpus of non-adaptive dialogues it is possible to learn an adaptive user modelling policy in resource scarce domains using our framework. We also show that the learned user modelling strategies performed better in terms of adaptation than hand-coded baselines policies on both simulated and real users. With real users, the learned policy produced around 20% increase in adaptation in comparison to the best performing hand-coded adaptive baseline. We also show that adaptation to user’s domain knowledge results in improving task success (99.47% for learned policy vs 84.7% for hand-coded baseline) and reducing dialogue time of the conversation (11% relative difference). This is because users found it easier to identify domain objects when the system used adaptive referring expressions during the conversations.
URI
http://hdl.handle.net/1842/5033
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page