Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bergman kernel on toric Kahler manifolds

View/Open
Pokorny2011.pdf (1.058Mb)
Date
28/06/2011
Author
Pokorny, Florian Till
Metadata
Show full item record
Abstract
Let (L,h) → (X,ω) be a compact toric polarized Kahler manifold of complex dimension n. For each k ε N, the fibre-wise Hermitian metric hk on Lk induces a natural inner product on the vector space C∞(X,Lk) of smooth global sections of Lk by integration with respect to the volume form ωn /n! . The orthogonal projection Pk : C∞(X,Lk) → H0(X,Lk) onto the space H0(X,Lk) of global holomorphic sections of Lk is represented by an integral kernel Bk which is called the Bergman kernel (with parameter k ε N). The restriction ρk : X → R of the norm of Bk to the diagonal in X × X is called the density function of Bk. On a dense subset of X, we describe a method for computing the coefficients of the asymptotic expansion of ρk as k → ∞ in this toric setting. We also provide a direct proof of a result which illuminates the off-diagonal decay behaviour of toric Bergman kernels. We fix a parameter l ε N and consider the projection Pl,k from C∞(X,Lk) onto those global holomorphic sections of Lk that vanish to order at least lk along some toric submanifold of X. There exists an associated toric partial Bergman kernel Bl,k giving rise to a toric partial density function ρl,k : X → R. For such toric partial density functions, we determine new asymptotic expansions over certain subsets of X as k → ∞. Euler-Maclaurin sums and Laplace’s method are utilized as important tools for this. We discuss the case of a polarization of CPn in detail and also investigate the non-compact Bargmann-Fock model with imposed vanishing at the origin. We then discuss the relationship between the slope inequality and the asymptotics of Bergman kernels with vanishing and study how a version of Song and Zelditch’s toric localization of sums result generalizes to arbitrary polarized Kahler manifolds. Finally, we construct families of induced metrics on blow-ups of polarized Kahler manifolds. We relate those metrics to partial density functions and study their properties for a specific blow-up of Cn and CPn in more detail.
URI
http://hdl.handle.net/1842/5301
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page