Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Java Optimisation using machine learning techniques

View/Open
IP040029.pdf (1.179Mb)
Date
07/2004
Author
Long, Shun
Metadata
Show full item record
Abstract
There is a continuing demand for higher performance, particularly in the area of scientific and engineering computation. In order to achieve high performance in the context of frequent hardware upgrading, software must be adaptable for portable performance. What is required is an optimising compiler that evolves and adapts itself to environmental change without sacrificing performance. Java has emerged as a dominant programming language widely used in a variety of application areas. However, its architectural independant design means that it is frequently unable to deliver high performance especially when compared to other imperative languages such as Fortran and C/C++. This thesis presents a language- and architecture-independant approach to achieve portable high performance. It uses the mapping notation introduced in the Unified Transformation Framework to specify a large optimisation space. A heuristic random search algorithm is introduced to explore this space in a feedback-directed iterative optimisation manner. It is then extended using a machine learning approach which enables the compiler to learn from its previous optimisations and apply the knowledge when necessary. Both the heuristic random search algorithm and the learning optimisation approach are implemented in a prototype Adaptive Optimisation Framework for Java (AOF-Java). The experimental results show that the heuristic random search algorithm can find, within a relatively small number of atttempts, good points in the large optimisation space. In addition, the learning optimisation approach is capable of finding good transformations for a given program from its prior experience with other programs.
URI
http://hdl.handle.net/1842/567
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page