Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer recognition of occluded curved line drawings

View/Open
Adler1978.pdf (2.374Mb)
Date
1978
Author
Adler, Mark Ronald
Metadata
Show full item record
Abstract
A computer program has been designed to interpret scenes from PEANUTS cartoons, viewing each scene as a two-dimensional representation of an event in the three-dimensional world. Characters are identified by name, their orientation and body position is described, and their relationship to other objects in the scene is indicated. This research is seen as an investigation of the problems in recognising flexible non-geometric objects which are subject to self-occlusion as well as occlusion by other objects. A hierarchy of models containing both shape and relational information has been developed to deal with the flexible cartoon bodies. Although the region is the basic unit used in the analysis, the hierarchy makes use of intermediate models to group individual regions into larger more meaningful functional units. These structures may be shared at a higher level in the hierarchy. Knowledge of model similarities may be applied to select alternative models and conserve some results of an incorrect model application. The various groupings account for differences among the characters or modifications in appearance due to changes in attitude. Context information plays a key role in the selection of models to deal with ambiguous shapes. By emphasising relationships between regions, the need for a precise description of shape is reduced. Occlusion interferes with the model-based analysis by obscuring the essential features required by the models. Both the perceived shape of the regions and the inter-relationships between them are altered. An heuristic based on the analysis of line junctions is used to confirm occlusion as the cause of the failure of a model-to-region match. This heuristic, an extension of the T-joint techniques of polyhedral domains, deals with "curved" junctions and can be applied to cases of multi-layered occlusion. The heuristic was found to be most effective in dealing with occlusion between separate objects; standard instances of self-occlusion were more effectively handled at the model level. This thesis describes the development of the program, structuring the discussion around three main problem areas: models, occlusion, and the control aspects of the system. Relevant portions of the programs analyses are used to illustrate each problem area.
URI
http://hdl.handle.net/1842/6603
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page