Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Central extensions of Current Groups and the Jacobi Group

View/Open
Docherty2012.pdf (568.0Kb)
Date
28/11/2012
Author
Docherty, Pamela Jane
Metadata
Show full item record
Abstract
A current group GX is an infinite-dimensional Lie group of smooth maps from a smooth manifold X to a finite-dimensional Lie group G, endowed with pointwise multiplication. This thesis concerns current groups G§ for compact Riemann surfaces §. We extend some results in the literature to discuss the topology of G§ where G has non-trivial fundamental group, and use these results to discuss the theory of central extensions of G§. The second object of interest in the thesis is the Jacobi group, which we think of as being associated to a compact Riemann surface of genus one. A connection is made between the Jacobi group and a certain central extension of G§. Finally, we define a generalisation of the Jacobi group that may be thought of as being associated to a compact Riemann surface of genus g ≥ 1.
URI
http://hdl.handle.net/1842/7838
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page