Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic alpha-invariants of del Pezzo surfaces with boundary

View/Open
Martinez Garcia2013.pdf (1.120Mb)
source.zip (184.3Kb)
Date
28/11/2013
Author
Martinez Garcia, Jesus
Garcia, Jesus Martinez
Metadata
Show full item record
Abstract
The global log canonical threshold, algebraic counterpart to Tian's alpha-invariant, plays an important role when studying the geometry of Fano varieties. In particular, Tian showed that Fano manifolds with big alpha-invariant can be equipped with a Kahler-Einstein metric. In recent years Donaldson drafted a programme to precisely determine when a smooth Fano variety X admits a Kahler-Einstein metric. It was conjectured that the existence of such a metric is equivalent to X being K-stable, an algebraic-geometric property. A crucial step in Donaldson's programme consists on finding a Kahler-Einstein metric with edge singularities of small angle along a smooth anticanonical boundary. Jeffres, Mazzeo and Rubinstein showed that a dynamic version of the alpha-invariant could be used to find such metrics. The global log canonical threshold measures how anticanonical pairs fail to be log canonical. In this thesis we compute the global log canonical threshold of del Pezzo surfaces in various settings. First we extend Cheltsov's computation of the global log canonical threshold of complex del Pezzo surfaces to non-singular del Pezzo surfaces over a ground field which is algebraically closed and has arbitrary characteristic. Then we study which anticanonical pairs fail to be log canonical. In particular, we give a very explicit classifiation of very singular anticanonical pairs for del Pezzo surfaces of degree smaller or equal than 3. We conjecture under which circumstances such a classifcation is plausible for an arbitrary Fano variety and derive several consequences. As an application, we compute the dynamic alpha-invariant on smooth del Pezzo surfaces of small degree, where the boundary is any smooth elliptic curve C. Our main result is a computation of the dynamic alpha-invariant on all smooth del Pezzo surfaces with boundary any smooth elliptic curve C. The values of the alpha-invariant depend on the choice of C. We apply our computation to find Kahler-Einstein metrics with edge singularities of angle β along C.
URI
http://hdl.handle.net/1842/8090
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page