Show simple item record

dc.contributor.authorStidson, R T
dc.contributor.authorHeal, Kate V
dc.contributor.authorDickey, Catherine A
dc.contributor.authorCape, Neil
dc.contributor.authorHeal, Mathew R
dc.coverage.spatial19en
dc.date.accessioned2005-10-05T14:45:31Z
dc.date.available2005-10-05T14:45:31Z
dc.date.issued2004
dc.identifier.citationStidson, R. T., Heal, K. V., Dickey, C. A., Cape, J. N. and Heal, M. R. (2004) Fluxes of trichloroacetic acid through a conifer forest canopy, Environ. Poll. 132, 73- 84en
dc.identifier.uriDOI: 10.1016/j.envpol.2004.03.023
dc.identifier.urihttp://hdl.handle.net/1842/842
dc.description.abstractControlled-dosing experiments with conifer seedlings have demonstrated an aboveground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, 1.4 × rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only 1–2% of above-canopy deposition. On average, 800 μg m−2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of 400 and 300 μg m−2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50–200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in addition to uptake from soil via transpiration), and that annualized within-canopy elimination is similar to that in controlled-dosing experiments.en
dc.format.extent466245 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherElsevieren
dc.subjectTCAen
dc.subjectUptakeen
dc.subjectEliminationen
dc.subjectNeedlesen
dc.subjectThroughfallen
dc.subjectStemflowen
dc.subjectLitterfallen
dc.titleFluxes of trichloroacetic acid through a conifer forest canopyen
dc.typeArticleen


Files in this item

This item appears in the following Collection(s)

Show simple item record