Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exponential asymptotics in wave propagation problems

View/Open
Foley2013.pdf (1.326Mb)
Date
28/11/2013
Author
Foley, Christopher Neal
Metadata
Show full item record
Abstract
We use the methods of exponential asymptotics to study the solutions of a one dimensional wave equation with a non-constant wave speed c(x,t) modelling, for example, a slowly varying spatio-temporal topography. The equation reads htt(x,t) = (c2(x,t)hx(x,t))x' (1) where the subscripts denote differentiation w.r.t. the parameters x and t respectively. We focus on the exponentially small reflected wave that appears as a result of a Stokes phenomenon associated with the complex singularities of the speed. This part of the solution is not captured by the standard WKBJ (geometric optics) approach. We first revisit the time-independent propagation problem using resurgent analysis. Our results recover those obtained using Meyers integral-equation approach or the Kruskal-Segur (K-S) method. We then consider the time-dependent propagation of a wavepacket, assuming increasingly general models for the wave speed: time independent, c(x), and separable, c1(x)c2(t). We also discuss the situation when the wave speed is an arbitrary function, c(x,t), with the caveat that the analysis of this setup has yet to be completed. We propose several methods for the computation of the reflected wavepacket. An integral transform method, using the Dunford integral, provides the solution in the time independent case. A second method exploits resurgence: we calculate the Stokes multiplier by inspecting the late terms of the dominant asymptotic expansion. In addition, we explore the benefits of an integral transform that relates the coefficients of the dominant solution in the time-dependent problem to the coefficients of the dominant solution in the time-independent problem. A third method is a partial differential equation extension of the K-S complex matching approach, containing details of resurgent analysis. We confirm our asymptotic predictions against results obtained from numerical integration.
URI
http://hdl.handle.net/1842/8838
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page