Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • BRE Centre for Fire Safety Engineering
  • BRE Research Publications
  • View Item
  •   ERA Home
  • Engineering, School of
  • BRE Centre for Fire Safety Engineering
  • BRE Research Publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of One-Dimensional Smoldering of Polyurethane in Microgravity Conditions

View/Open
rein1.pdf (2.967Mb)
Date
08/2004
Author
Rein, Guillermo
Bar-Ilan, Amnon
Fernandez-Pello, Carlos
Ellzey, Janet L
Torero, Jose L
Urban, David
Metadata
Show full item record
Abstract
Results are presented from a model of forward smoldering combustion of polyurethane foam in microgravity. The transient one-dimensional numerical-model is based on that developed at the University of Texas at Austin. The conservation equations of energy, species and mass in the porous solid and in the gas phases are numerically solved. The solid and the gas phase are not assumed to be in thermal or in chemical equilibrium. The chemical reactions modeled consist of foam oxidation and pyrolysis reactions, as well as char oxidation. The model has been modified to account for new polyurethane kinetics parameters and radial heat losses to the surrounding environment. The kinetics parameters are extracted from thermogravimetric analyses published in the literature and using Genetic Algorithms as the optimization technique. The model results are compared with previous tests of forward smoldering combustion in microgravity conducted aboard the NASA Space Shuttle. The model calculates well the propagation velocities and the overall smoldering characteristics. Direct comparison of the solution with the experimental temperature profiles shows that the model predicts well these profiles at high temperature, but not as well at lower temperatures. The effect of inlet gas velocity is examined and the minimum airflow for ignition identified. It is remarkable that this one-dimensional model with simplified kinetics is capable of predicting cases of smolder ignition but with no self-propagation away from the igniter region. The model is used for better understanding of the controlling mechanisms of smolder combustion for the purpose of fire safety, both in microgravity and normal gravity, and to extend the unique microgravity data to wider conditions avoiding the high cost of space-based experiments.
URI
http://hdl.handle.net/1842/887
Collections
  • BRE Research Publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page