Inductive String Template-Based Learning of Spoken Language
Date
2005Author
Gutkin, Alexander
King, Simon
Metadata
Abstract
This paper deals with formulation of alternative structural approach to the speech recognition problem. In this approach, we require both the representation and the learning algorithms defined on it to be linguistically meaningful, which allows the speech recognition system to discover the nature of the linguistic classes of speech patterns corresponding to the speech waveforms. We briefly discuss the current formalisms and propose an alternative - a phonologically inspired string-based inductive speech representation, defined within an analytical framework specifically designed to address the issues of class and object representation. We also present the results of the phoneme classification experiments conducted on the TIMIT corpus of continuous speech.