Show simple item record

dc.contributor.authorFrankel, Joeen
dc.contributor.authorRichmond, Korinen
dc.contributor.authorKing, Simonen
dc.contributor.authorTaylor, Paulen
dc.coverage.spatial4en
dc.date.accessioned2006-05-11T13:09:28Z
dc.date.available2006-05-11T13:09:28Z
dc.date.issued2000-10
dc.identifier.citationIn ICSLP-2000, vol.4, 254-257.
dc.identifier.issnhttp://www.isca-speech.org/archive/icslp_2000
dc.identifier.urihttp://hdl.handle.net/1842/981
dc.description.abstractWe describe a speech recognition system which uses articulatory parameters as basic features and phone-dependent linear dynamic models. The system first estimates articulatory trajectories from the speech signal. Estimations of x and y coordinates of 7 actual articulator positions in the midsagittal plane are produced every 2 milliseconds by a recurrent neural network, trained on real articulatory data. The output of this network is then passed to a set of linear dynamic models, which perform phone recognitionen
dc.format.extent64866 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoen
dc.publisherInternational Speech Communication Associationen
dc.titleAn Automatic Speech Recognition System Using Neural Networks and Linear Dynamic Models to Recover and Model Articulatory Tracesen
dc.typeConference Paperen


Files in this item

This item appears in the following Collection(s)

Show simple item record