Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical deposition of small molecules for electronic materials

View/Open
Allwright2014.pdf (9.351Mb)
Allwright2014.docx (14.00Mb)
Date
27/11/2014
Author
Allwright, Emily Marieke
Metadata
Show full item record
Abstract
The method of the deposition of films of small molecules for use in electronic applications is just as important as the molecule design itself as the film’s morphology and continuity influence the performance of the devices that they are incorporated in. The purpose of the work in this thesis was to develop a method of electrochemically depositing films of small molecules for potential use in electronic applications. A method of electrochemically depositing films of chemically reduced low solubility dye molecules was successfully pioneered. The process was developed using N,N dibutyl-3,4,9,10-perylene-bis(dicarboxime), a simplified version of 3,4,9,10-perylene-tetracarboxylic bisbenzimidalzole. Both of these dyes have been used in electronic applications, but low solubility makes them difficult to deposit by traditional solution techniques. A series of films was electrochemically deposited onto FTO coated glass and field effect transistors using coulometry. These films were characterised by absorption spectroscopy, photoluminescence, scanning electron microscopy, X-ray diffraction and photo-electrochemistry. The same deposition method was applied to copper phthalocyanine. These films were characterised by absorption spectroscopy, photoluminescence, scanning electron microscopy and X-ray diffraction. The developed method was used to deposit films of bilayers of dyes and to investigate the dye penetration during the deposition of copper phthalocyanine onto porous titanium dioxide. Films of neutral copper and nickel dithiolenes were electrodeposited from air-stable TMA salts to investigate the absorbance of the near infrared species formed, as well as to investigate the conductivity of both complexes and the magnetoresponse of the neutral copper dithiolene which is air unstable when formed chemically.
URI
http://hdl.handle.net/1842/9921
Collections
  • Chemistry thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page