CMOS SPAD-based image sensor for single photon counting and time of flight imaging
View/ Open
Date
27/06/2016Author
Dutton, Neale Arthur William
Metadata
Abstract
The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised
electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and
temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon
sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology
offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high
sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with
significantly lower cost and comparable performance in low light or high speed scenarios. For example, with
temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be
formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can
yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the
entanglement of photons may be realised.
The goal of this research project is the development of such an image sensor by exploiting single photon
avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology.
SPADs have three key combined advantages over other imaging technologies: single photon sensitivity,
picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue
techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A
SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or
fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that
makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are
captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an
equivalent of 0.06 electrons.
The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast
readout and oversampled image formation are projected towards the formation of binary single photon imagers
or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to
the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error
rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image
sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film.
Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm
precision in a 60cm range.