Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data and Models for Statistical Parsing with Combinatory Categorial Grammar

View/Open
IP030013.pdf (974.8Kb)
Date
07/2003
Author
Hockenmaier, Julia
Metadata
Show full item record
Abstract
This dissertation is concerned with the creation of training data and the development of probability models for statistical parsing of English with Combinatory Categorial Grammar (CCG). Parsing, or syntactic analysis, is a prerequisite for semantic interpretation, and forms therefore an integral part of any system which requires natural language understanding. Since almost all naturally occurring sentences are ambiguous, it is not sufficient (and often impossible) to generate all possible syntactic analyses. Instead, the parser needs to rank competing analyses and select only the most likely ones. A statistical parser uses a probability model to perform this task. I propose a number of ways in which such probability models can be defined for CCG. The kinds of models developed in this dissertation, generative models over normal-form derivation trees, are particularly simple, and have the further property of restricting the set of syntactic analyses to those corresponding to a canonical derivation structure. This is important to guarantee that parsing can be done efficiently. In order to achieve high parsing accuracy, a large corpus of annotated data is required to estimate the parameters of the probability models. Most existing wide-coverage statistical parsers use models of phrase-structure trees estimated from the Penn Treebank, a 1-million-word corpus of manually annotated sentences from theWall Street Journal. This dissertation presents an algorithm which translates the phrase-structure analyses of the Penn Treebank to CCG derivations. The resulting corpus, CCGbank, is used to train and test the models proposed in this dissertation. Experimental results indicate that parsing accuracy (when evaluated according to a comparable metric, the recovery of unlabelled word-word dependency relations), is as high as that of standard Penn Treebank parsers which use similar modelling techniques. Most existing wide-coverage statistical parsers use simple phrase-structure grammars whose syntactic analyses fail to capture long-range dependencies, and therefore do not correspond to directly interpretable semantic representations. By contrast, CCG is a grammar formalism in which semantic representations that include long-range dependencies can be built directly during the derivation of syntactic structure. These dependencies define the predicate-argument structure of a sentence, and are used for two purposes in this dissertation: First, the performance of the parser can be evaluated according to how well it recovers these dependencies. In contrast to purely syntactic evaluations, this yields a direct measure of how accurate the semantic interpretations returned by the parser are. Second, I propose a generative model that captures the local and non-local dependencies in the predicate-argument structure, and investigate the impact of modelling non-local in addition to local dependencies.
URI
http://hdl.handle.net/1842/320
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page