Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational sarcasm detection and understanding in online communication

View/Open
Oprea2023.pdf (876.1Kb)
Date
25/04/2023
Author
Oprea, Silviu Vlad
Metadata
Show full item record
Abstract
The presence of sarcasm in online communication has motivated an increasing number of computational investigations of sarcasm across the scientific community. In this thesis, we build upon these investigations. Pointing out their limitations, we bring four contributions that span two research directions: sarcasm detection and sarcasm understanding. Sarcasm detection is the task of building computational models optimised for recognising sarcasm in a given text. These models are often built in a supervised learning paradigm, relying on datasets of texts labelled for sarcasm. We bring two contributions in this direction. First, we question the effectiveness of previous methods used to label texts for sarcasm. We argue that the labels they produce might not coincide with the sarcastic intention of the authors of the texts that they are labelling. In response, we suggest a new method, and we use it to build iSarcasm, a novel dataset of sarcastic and non-sarcastic tweets. We show that previous models achieve considerably lower performance on iSarcasm than on previous datasets, while human annotators achieve a considerably higher performance, compared to models, pointing out the need for more effective models. Therefore, as a second contribution, we organise a competition that invites the community to create such models. Sarcasm understanding is the task of explicating the phenomena that are subsumed under the umbrella of sarcasm through computational investigation. We bring two contributions in this direction. First, we conduct an alaysis into the socio-demographic ecology of sarcastic exchanges between human interlocutors. We find that the effectiveness of such exchanges is influenced by the socio-demographic similarity between the interlocutors, with factors such as English language nativeness, age, and gender, being particualry influential. We suggest that future social analysis tools should account for these factors. Second, we challenge the motivation of a recent endeavour of the community; mainly, that of augmenting dialogue systems with the ability to generate sarcastic responses. Through a series of social experiments, we provide guidelines for dialogue systems concerning the appropriateness of generating sarcastic responses, and the formulation of such responses. Through our work, we aim to encourage the community to consider computational investigations of sarcasm interdisciplinarily, at the intersection of natural language processing and computational social science.
URI
https://hdl.handle.net/1842/40531

http://dx.doi.org/10.7488/era/3297
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page