Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Geosciences, School of
  • GeoSciences PhD thesis and dissertation collection
  • View Item
  •   ERA Home
  • Geosciences, School of
  • GeoSciences PhD thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biochar amendment and greenhouse gas emissions from agricultural soils

View/Open
Case2013.docx (997.2Kb)
Case2013.pdf (3.541Mb)
Date
13//2/28/1
Author
Case, Sean Daniel Charles
Metadata
Show full item record
Abstract
The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions in a bioenergy and arable crop soil, at a range of temperatures and with or without wetting/drying cycles. More detailed investigation on the underlying mechanisms focused on soil N2O emissions. I tested how biochar altered soil physico-chemical properties and the subsequent effects on soil N2O emissions. In addition, 15N pool dilution techniques were used to investigate the effect of biochar on soil N transformations. Biochar amendment significantly suppressed soil GHG emissions for two years within a bioenergy soil in the field and for several months in an arable soil. I hypothesised that soil CO2 emissions were suppressed under field conditions by a combination of mechanisms: biochar induced immobilisation of soil inorganic-N (BII), increased C-use efficiency, reduced C-mineralising enzyme activity and adsorption of CO2 to the biochar surface. Soil CO2 emissions were increased for two days following wetting soil due to the remobilisation of biochar-derived labile C within the soil. Soil N2O emissions were suppressed in laboratory incubations within several months of biochar addition due to increased soil aeration, BII or increased soil pH that reduced the soil N2O: N2 ratio; effects that varied depending on soil inorganic-N concentration and moisture content. These results are significant as they consistently demonstrate that fresh hardwood biochar has the potential to reduce soil GHG emissions over a period of up to two years in bioenergy crop soil, while simultaneously sequestering C within the soil. They also contribute greatly to understanding of the mechanisms underlying the effect of biochar addition on soil N transformations and N2O emissions within bioenergy and arable soils. This study supports the hypothesis that if scaled up, biochar amendment to soil may contribute to significant reductions in global GHG emissions, contributing to climate change mitigation. Further studies are needed to ensure that these conclusions can be extrapolated over the longer term to other field sites, using other types of biochar.
URI
http://hdl.handle.net/1842/8049
Collections
  • GeoSciences PhD thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page