Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Results from the ZEPLIN-III dark matter search experiment

View/Open
thesis files.zip (30.25Mb)
Scovell2011.pdf (29.20Mb)
Date
27/06/2011
Author
Scovell, Paul Robert
Metadata
Show full item record
Abstract
The existence of a significant non-baryonic component to the Universe is widely accepted, with worldwide efforts underway trying to detect this so-called dark matter. The ZEPLIN-III detector utilises liquid xenon (Xe) as a target medium in the search for the expected rare interactions of Weakly Interacting Massive Particles, or WIMPs, with ordinary baryonic matter. The neutralino, arising in supersymmetric extensions to the standard model of particle physics, provides a particularly well-motivated candidate. The ZEPLIN-III experiment, operating in two-phase (liquid/gas) mode, measures both the scintillation and ionisation signatures produced during an interaction. The first science run (FSR) of ZEPLIN-III was performed during three months in 2008. The run culminated in a published result which excluded a WIMP-nucleon interaction cross-section above 8:1 x 10-8 pb for a 60 GeVc-2 WIMP at the 90% confidence level. ZEPLIN-III then entered an upgrade period where the photomultiplier tube (PMT) array, previously the dominant source of background, was replaced with new, ultra-low background, PMTs. The radio-contamination of components used to make these PMTs has been thoroughly studied and their impact on the background rates in ZEPLIN-III characterised. Additionally, a new 1.5 tonne plastic scintillator veto detector was constructed, increasing the ability to reject WIMPlike signals caused by neutron induced nuclear recoil events and improving the γ-ray discrimination capability of ZEPLIN-III. The second science run (SSR) of ZEPLIN-III began in June 2010 and continued for 6 months, with a projected upper limit for the interaction cross-section of 1:52 x 10-8 pb for a 55 GeVc-2 WIMP at the 90% confidence level.
URI
http://hdl.handle.net/1842/9592
Collections
  • Physics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page