Show simple item record

dc.contributor.advisorOh, Tadahiro
dc.contributor.advisorPocovnicu, Oana
dc.contributor.authorChapouto, Andreia
dc.date.accessioned2022-01-13T12:35:09Z
dc.date.available2022-01-13T12:35:09Z
dc.date.issued2021-11-27
dc.identifier.urihttps://hdl.handle.net/1842/38413
dc.identifier.urihttp://dx.doi.org/10.7488/era/1678
dc.description.abstractIn this thesis, we study the well-posedness of the modified and generalized Korteweg-de Vries equations on the one-dimensional torus. We first consider the complex-valued modified Korteweg-de Vries equation (mKdV). We observe that the momentum, a formally conserved quantity of the equation, plays a crucial role in the well-posedness theory. In particular, following the method by Guo-Oh (2018), we show the ill-posedness of the complex-valued mKdV, in the sense of non-existence of solutions, when the momentum is infinite. This result motivates the introduction of a novel renormalization of the equation, which we propose as the correct model to study at low regularity. Moreover, we establish the global well-posedness of the renormalized equation in the Fourier-Lebesgue spaces following two approaches: the Fourier restriction norm method and the recent method by Deng-Nahmod-Yue (2020). Lastly, by imposing a new notion of finite momentum at low regularity, we show the existence of distributional solutions to the original equation, with the nonlinearity interpreted in a limiting sense. Regarding the generalized Korteweg-de Vries equations (gKdV), we present a joint work with N. Kishimoto (RIMS, Kyoto University) on the well-posedness with Gibbs initial data. To bypass the analytical ill-posedness of gKdV in the Sobolev support of the Gibbs measure, we prove local well-posedness in the Fourier-Lebesgue spaces. Key ingredients are novel bilinear and trilinear Strichartz estimates adapted to the Fourier-Lebesgue setting. Finally, by applying Bourgain’s invariant measure argument (1994), we construct almost sure global-in-time dynamics and show the invariance of the Gibbs measure for gKdV.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionA. Chapouto, A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces, Discrete Contin. Dyn. Syst. 41 (2021), no. 8, 3915–3950.en
dc.relation.hasversionA. Chapouto, A refined well-posedness result for the modified KdV equation in the Fourier-Lebesgue spaces, to appear in J. Dynam. Differential Equationsen
dc.relation.hasversionA. Chapouto, N. Kishimoto, Invariance of the Gibbs measures for the periodic generalized KdV equations, arXiv:2104.07382 [math.AP].en
dc.subjectKorteweg-de Vries equationsen
dc.subjectmKdVen
dc.subjectgKdVen
dc.subjectdispersive partial differential equationsen
dc.titleLow regularity well-posedness of the modified and the generalized Korteweg-de Vries equationsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record