Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust SLAM and motion segmentation under long-term dynamic large occlusions

View/Open
LongR_2023.pdf (43.17Mb)
Date
29/08/2023
Author
Long, Ran
Metadata
Show full item record
Abstract
Visual sensors are key to robot perception, which can not only help robot localisation but also enable robots to interact with the environment. However, in new environments, robots can fail to distinguish the static and dynamic components in the visual input. Consequently, robots are unable to track objects or localise themselves. Methods often require precise robot proprioception to compensate for camera movement and separate the static background from the visual input. However, robot proprioception, such as \ac{IMU} or wheel odometry, usually faces the problem of drift accumulation. The state-of-the-art methods demonstrate promising performance but either (1) require semantic segmentation, which is inaccessible in unknown environments, or (2) treat dynamic components as outliers -- which is unfeasible when dynamic objects occupy a large proportion of the visual input. This research work systematically unifies camera and multi-object tracking problems in indoor environments by proposing a multi-motion tracking system; and enables robots to differentiate the static and dynamic components in the visual input with the understanding of their own movements and actions. Detailed evaluation of both simulation environments and robotic platforms suggests that the proposed method outperforms the state-of-the-art dynamic SLAM methods when the majority of the camera view is occluded by multiple unmodeled objects over a long period of time.
URI
https://hdl.handle.net/1842/40894

http://dx.doi.org/10.7488/era/3647
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page